
Toms Global Alignment Algorithm 
The currently used major algorithms for aligning biological sequences (protein and nucleic acid sequences) 
stem from the pioneering work of Needleman and Wunsch (1970). This algorithm performs optimal matching 
alignments with a time complexity of O(m*n) and a space complexity of O(m*n), where m – length of shortest 
sequence to be aligned and  n – length of longest sequence to be aligned. Toms algorithm is modification of 
Needleman-Wunsch algorithm with a time complexity of O(m) and a space complexity of O(n). It is not only 
fast for finding optimal alignments but it is also super fast for finding close to optimal alignments. 

 
Sequence alignment or sequence comparison lies at heart of the bioinformatics, which describes the way of arrangement of 
DNA/RNA or protein sequences, in order to identify the regions of similarity among them. It is used to infer structural, functional and 
evolutionary relationship between the sequences. Alignment finds similarity level between query sequence and different database 
sequences. The algorithm works by dynamic programming approach, which divides the problem into smaller independent sub 
problems. It finds the alignment more quantitatively by assigning scores. 
 
Before going into Toms algorithm specifics, we will discuss in details the Needleman-Wunsch algorithm, which is appropriate for 
finding the best alignment of two sequences that are similar in length and similar across their entire lengths. 
	
 Then we will introduce three very simple modifications, which will allow accelerate algorithm, reduce memory usage and allow align 
files with length up to 1,000,000,000.  

Needleman-Wunsch	algorithm 

In possible alignment we can see that letters may match, mismatch, be deleted or inserted: 

• Match: The two letters are the same 
• Mismatch: The two letters are differential 
• Insertion or Deletion (indel): One letter aligns to a gap in the other string. 

There are various ways to score these three scenarios 

The simple basic scoring schema can be assumed as, if two residues (nucleotide or amino acid) at ith and jth position are same, matching 
score is 2 (S(i,j) = 2) or if the two residues at ith and jth position are not same, mismatch score is assumed as -3 (S(i,j) = -3). The linear 
gap score (g) or linear gap penalty is assumed as -2.  

Gap score is defined as penalty given to alignment, when we have insertion or deletion.  

The dynamic programming matrix is defined with three different steps.  
1. Initialization of the matrixes with initial scores and back pointers. 
2. Matrix filling with maximum scores and back pointers. 
3. Using trace back matrix trace back the residues for appropriate alignment. 

To study the algorithms, consider the two given DNA sequences: ACGCATCA (sequence a), ACTGATTCA (sequence b). 

The length (count of the nucleotides or amino acids) of the sequence a and sequence b are:  m = 8 and n = 9 respectively. Two initial 
matrixes (first – scoring matrix M and second – trace back matrix N) are created with m + 1 row’s and n + 1 column’s (where m and 
n corresponds to length of the sequences).  Extra row and column is given, so as to align with gap at the starting of the sequences as 
shown in Figure 1. 

Scoring Matrix 

  -  A  C  T  G  A  T   T  C  A 
 -             
 A           
 C           
 G           
 C           
 A           



 T           
 C           
 A           

Trace back matrix 

  -  A  C  T  G  A  T   T  C  A 
 -           
 A           
 C           
 G           
 C           
 A           
 T           
 C           
 A           

Figure 1. Initial matrixes 

1. Initialization of score and trace back matrixes 

Scoring matrix initialization: 
M(0, 0) = 0 
M(i, 0) = (i – 1) * g,  for i = 1, … , m 
M(0, j) = (j – 1) * g,  for j = 1, … , n 

Trace back matrix initialization: 
N(0, 0) = “done” 
N(i, 0) = “j”,   for i = 1, … , m 
N(0, j) = “i”,  for j = 1, … , n 
 

Given there is no 'top' or 'top-left' cells for the first row we can only add from the existing cell to the left. Hence we add -2 for each 
shift to the right as this represents an insertion or deletion from the previous score. This results in the score matrix first row being 0, -
2, -4, -6, -8, -10, -12, -14, -16, -18. The first row in trace back matrix will be: “end”, “i”, “i”, “i”, “i”, “i”, “i”, “i”, “i”, “i”. Here we 
use character “i” for direction code “left”.  The same applies to the first column as we only have existing scores above. In first column 
of trace back matrix we use character “j” for direction “up”. 
 
Thus we have  (Figure 2): 

Scoring Matrix 

  -  A  C  T  G  A  T   T  C  A 
 -   0  -2  -4  -6  -8 -10 -12 -14 -16 -18 

 A  -2          

 C  -4          

 G  -6          

 C  -8          

 A -10          

 T -12          

 C -14          

 A -16          

Trace back matrix 

  -  A  C  T  G  A  T   T  C  A 
 - done   i  i  i  i  i  i  i  i  i 
 A   j          
 C   j          
 G   j          



 C   j          
 A   j          
 T   j          
 C   j          
 A   j          

Figure 2. Initialization of matrixes 

  

2. Calculation of scores and filling the trace back matrix 
	
The second and crucial step of the algorithm is calculation of scores and filling the trace back matrix. To find the maximum score 
M(i,j)	of each cell, it is required to know the neighboring scores (northwest diagonal, left and up) of the current position. From the 
assumed values, add the match or mismatch (assumed) score to the diagonal value. Similarly add the gap score to the other 
neighboring values. Thus, we can obtain three different values, from that take the maximum among them and fill the ith and jth position 
with the score obtained. Simultaneously we get the score matrix we compute the trace back matrix which helps us to process 
deduction of the best alignment. 

Overall the equations can be showed in the following manner: 

M(i, j) = Maximum[M(i-1, j-1) + S(i, j), M(i, j-1) + g, M(i-1, j) + g] 
 

N(i, j) = “d” if M(i, j) = M(i-1, j-1) + S(i, j); 
“i” if M(i, j) = M(i, j-1) + g 

 “j” if M(i, j) = M(i-1, j) + g; 
	

for i = 1, … , m and for j = 1, … , n	
	

Formula 1. 

Here M(i, j)	is the score located in row i and column j  of scoring matrix M and  N(i, j)	is the direction located in row i and column j  
of trace back matrix N. 

To score the matrix of the current position (the first position M(1, 1)) the above stated formula can be used. The first residue 
(nucleotides) in the two sequences are ‘A’ and ‘A’. Since they are matching residues, the score would (S(1, 1) = 2) be 2. 

M(1, 1) = Maximum[M(0, 0) + S(1, 1), M(1, 0)  + g, M(0, 1) + g] = 

Maximum[0 + (2), (-2) + (-2), (-2) + (-2)] = 

Maximum[2, -4, -4] = 2  

N(1, 1) = “d” (because  M(1, 1) = M(0, 0) + S(1, 1)) 

The obtained score 2 is placed in position i,j (1,1) of the scoring matrix. Because we get maximum from element M(0, 0)  we place 
value “d” (code for direction “diagonal”) to appropriate position i,j (1,1) of the trace back matrix. 

 Similarly using the above equations, we fill all the remaining rows and columns of scoring matrix.  Simultaneously we place the back 
pointers to the cells of trace back matrix from where the maximum score is obtained, which are predecessors of the current cell 
(Figure 3). 

Scoring Matrix 

  -  A  C  T  G  A  T   T  C  A 
 -   0  -2   -4   -6   -8 -10 -12 -14 -16 -18 

 A  -2   2    0    -2   -4   -6   -8 -10 -12 -14 



 C  -4   0    4    2    0   -2   -4   -6  -8 -10 

 G  -6  -2    2    1    4    2    0   -2   -4   -6 

 C  -8  -4    0   -1    2    1   -1   -3    0   -2 

 A -10  -6   -2   -3    0    4    2    0   -2    2 

 T -12  -8   -4    0   -2    2    6    4    2    0 

 C -14 -10   -6   -2   -3    0    4    3    6    4 

 A -16 -12   -8   -4   -5   -1    2    1    4    8 

Trace back matrix 

  -  A  C  T  G  A  T   T  C  A 
 - done   i   i   i   i   i   i   i   i   i 
 A   j  d   i   i   i  d   i   i   i  d 
 C   j   j  d   i   i   i   i   i  d   i 
 G   j   j   j  d  d   i   i   i   i   i 
 C   j   j  d  d   j  d  d  d  d   i 
 A   j  d   j  d   j  d   i   i   i  d 
 T   j   j   j  d   i   j  d  d   i   i 
 C   j   j  d   j  d   j   j  d  d   i 
 A   j  d   j   j d  d   j  d   j   d 

Figure 3. Matrixes filling with scores and back pointers 

  

3. Deducing the alignment from the trace back matrix  

The final step in the algorithm is the trace back for the best alignment:  

1. Trace back is the process of deduction of the best alignment from the trace back matrix.  
2. Trace back always begins with the last cell, which is the bottom right cell. In the above-mentioned example, one can see 

the bottom right cell code d. 
3. It moves according to the trace back value written in the cell.  
4. There are 3 possible traversals, d - diagonal, i - left or j - up.  
5. Trace back completion happens when the top-left cell becomes “end”. 

 
Best alignment:  
 

1. Alignment is deduced from the values of cells, which are through the trace back path, by taking into account the values of the 
cell that are in trace back matrix.  

2. In trace back matrix, If the value is d (“diagonal”), the letters from the two sequences are aligned. If it is i (“left”), a Gap is 
introduced in the left sequence, and if it is j (“up”), a gap is introduced in the top sequence, and always obtained sequences 
are aligned backwards. (Figure 4). 

Trace back matrix 

  -  A  C  T  G  A  T   T  C  A 
 - done   i   i   i   i   i   i   i   i   i 
 A   j  d   i   i   i  d   i   i   i  d 
 C   j   j  d   i   i   i   i   i  d   i 
 G   j   j   j  d  d   i   i   i   i   i 
 C   j   j  d  d   j  d  d  d  d   i 
 A   j  d   j  d   j  d   i   i   i  d 
 T   j   j   j  d   i   j  d  d   i   i 
 C   j   j  d   j  d   j   j  d  d   i 
 A   j  d   j   j d  d   j  d   j   d 

Best alignment 



AC-GCA-TCA 
|| | | ||| 
ACTG-ATTCA 

Figure 4. The best alignment with trace backing 

 

Alignment with affine gap scores 
 
The alternative to using linear gap score is to use an affine gap score 

g = o + l * e, 
with negative  o the gap-open score and negative e the gap-extension score.  
 
 
Instead of using one score matrix M(i, j) to represent the best score S(i, j) attainable up to a(i) and b(j), we will now use three 
matrices M, X and Y:  

1. M(i, j) is the best score up to (i, j), given that a(i) is aligned to b(j),  
2. X(i, j) is the best score up to (i, j), given that a(i) is aligned to a gap, and  
3. Y(i, j) is the best score up to (i, j), given that b(j) is aligned to a gap. 
 

Scoring matrixes initialization: 
M(0, 0) = 0, X(0, 0) = Y(0, 0) = −∞  
X(0, j) = o + (j − 1) * e, M(0, j) = X(0, j) = −∞, for j = 1, . . . , n 
Y(i, 0) = o + (i − 1) * e, M(i, 0) = Y(i, 0) = −∞, for i = 1, . . . , m 

 
Trace back matrix initialization: 

N(0, 0) = “done” 
N(i, 0) = “j”,   for i = 1, … , m 
N(0, j) = “i”,  for j = 1, … , n 

 
Scoring matrixes and trace back matrix recursion:  
 
X(i, j) = Maximum[ M(i, j − 1) + o + e, X(i, j − 1) + e] (Maximum[begin gap in a, continue gap in a]) 
Y(i, j) = Maximum[ M(i − 1, j) + o + e, Y(i − 1, j) + e]  (Maximum[begin gap in b, continue gap in b]) 
M(i, j) = S(i , j ) + Maximum[ M(i − 1, j − 1), X(i − 1, j − 1), Y(i − 1, j − 1)]  (Maximum[match or mismatch, end gaps in a, end 
gaps in b])  

N(i, j) = “d” if M(i, j) = Maximum[M(i, j), X(i, j), Y(i, j)]; 
      “i” if X(i, j) = Maximum[M(i, j), X(i, j), Y(i, j)]; 
     “j” if Y(i, j) = Maximum[M(i, j), X(i, j), Y(i, j)] 

 
for i = 1, … , m and for j = 1, … , n 

 

Toms	algorithm	

First improvement 	

As you can see on the Figure 4 the sells of optimal solution are located on diagonal of trace back matrix. For getting this solution we 
do not need to calculate whole matrix, it is enough to calculate the cells, located in tunnel t on 2 highlighted diagonals of Scoring 
Matrix shown on Figure 5.  For our example two diagonals is minimum size of tunnel t, which can hold the cells for best alignment. 
We can easily see that if m = n the minimum tunnel width will be 1. In case when m != n the minimum tunnel width will be n – m + 
1. Here and further we expect that n > m (sequence b is longer than sequence a) otherwise we can exchange them. 

In many cases (usually when sequences a and b have low similarity and the best alignment contains additional gaps) to hold the best 
alignment the tunnel should have additional quantity tb of diagonals (tunnel borders) located to the left and to the right of highlighted 
minimum tunnel diagonals. For our example (just to demonstrate the algorithm details) we will use tunnel width tw = 4  - two 
highlighted minimum tunnel diagonals and two tunnel borders – one for each side of tunnel (tb = 1) .  



Scoring Matrix 

  -  A  C  T  G  A  T   T  C  A 
 -   0  -2   -4            

 A  -2   2    0    -2             

 C     0    4    2    0             

 G        2    1    4    2              

 C          -1    2    1   -1          

 A             0    4    2    0       

 T                2    6    4    2    

 C                  4    3    6    4 

 A                     1    4    8 

Trace back matrix 

  -  A  C  T  G  A  T   T  C  A 
 - done   i   i              
 A   j  d   i   i             
 C     j  d   i   i       
 G     j  d  d   i     
 C          d   j  d  d      
 A         j  d   i   i    
 T               j  d  d   i  
 C               j  d  d   i 
 A            d   j   d 

Figure 5. Diagonally located cells are sufficient for calculation of optimal solution 

 

Now we can pay attention that:  

• Optimal alignment solution for two FASTA files occupying diagonally located cells in tunnel between upper left corner and 
down right corner. 

• From score matrix we can see that cells with maximum scores located in the tunnel or not so far from it. 

Now for our calculation we can reduce the quantity of columns in score and trace back matrixes from 10 to 4.  Here 4 is tunnel width 
tw. New (tunnel) matrixes are shown on Figure 6.  
 
Please pay attention that: 

1. Northwest diagonals of Needleman-Wunsh matrixes become columns in Toms tunnel matrixes 
2. Columns of Needleman-Wunsh matrixes become northeast diagonals in Toms tunnel matrixes 
3. Column headers of Needleman-Wunsh matrixes (nucleotides of sequence b) become headers of northeast diagonals in Toms 

tunnel matrixes 
 

Toms Tunnel Scoring Matrix 

     -  A  C 
 -     0  -2   -4  T 
 A  -2    2    0    -2  G 
 C   0    4    2    0  A 
 G    2    1    4    2  T 
 C   -1    2    1   -1  T 
 A    0    4    2    0  C 
 T    2    6    4    2  A 
 C    4    3    6    4    
 A    1    4    8       



Toms Tunnel Trace back matrix 

    -  A  C 
 -  done   i   i  T 
 A   j   d   i   i  G 
 C   j   d   i   i  A 
 G   j   d  d   i  T 
 C  d    j  d  d  T  
 A   j   d   i   i  C 
 T   j   d  d   i  A  
 C   j   d  d   i  
 A  d    j  d     

Figure 6.  Toms score and trace back matrixes 

Now direction for symbol “i” in tunnel trace back matrix is the same “left”, but “d” now means “up” and “j” means “up and right”. 
As we can see the process of calculation tunnel scoring matrix and tunnel trace back matrix is the same, difference only in location of 
cells relatively each other.  Also trace back process should be started from position k = tw - tb in last row of tunnel trace back matrix. 
Here p is quantity of columns in tunnel trace back matrix (tunnel width tw) and tb os tunnel border width. 
 
Second improvement 
 
If we will look closer to the final step of algorithm we can see that trace back for the best alignment don’t required the scoring matrix. 
This matrix we need only for calculation direction codes in the trace back matrix. This is why we don’t need store in memory whole 
scoring matrix.   We can store in memory only one row – current row. Cells of next row we can calculate from current row cells and 
place again to the current row. 
 
Lets look to this process in details. 
 
First of all we place to the current tunnel row R the row #1 of scoring matrix: 
 

#1     #2    #3    #4 
    0  -2   -4 

  
Please pay attention that this row R in column #1 has no data because both score matrix and trace back matrix have no cell at this 
position in tunnel. 
Score R(k) in position k (k =  1, …,  tw) of current tunnel row i can be calculated using formula:  
 
 

R(k) = Maximum[R(k) + S(i, j), M(k – 1) + g, M(k +1) + g]  
 

Formula 2. 
 

Here j is calculated using formula: j = k + i – tb, where tb is tunnel border size. 
As we can see from Formula 2 when k = 0 we do not include in Maximum[…] component M(k – 1)+ g and when k = tw we do not 
include in Maximum[…] component M(k + 1) + g, because score cells for these components are outside of tunnel. 
 
Remark: in case with affine gap scores we have exactly the same algorithm for calculation three scoring matrixes M, X and Y. For 
every of these matrixex we can use only one row with length tw to store all data required for back trace matrix creation.  
 
 
Third improvement  
 
After implementing first two improvements we have time complexity proportional to n*tw for calculation of scores and filling the 
trace back matrix, where n is length of longest sequence and tw is the tunnel width.   We also have time complexity proportional to n 
for deducing the alignment from the trace back matrix.  
Space complexity is m*2*tw bytes to store trace back matrix, where m is length of shortest sequence and tw is tunnel width. 
(JavaScript, language that we used for implementing algorithms, store characters in 2 bytes as 16 bit binary numbers.) 
 



We can reduce space complexity extra 8 times if we will present directional codes “i”, “j” and “d” in trace back matrix as two digit 
binary numbers, because as we said earlier, in JavaScript one character is represented by 2 bytes with 16 digit binary number. We can 
use following binary numbers for direction codes: 
 

  i 01 
  j 10 
 d 00 

 
Figure 7. Binary numbers instead of direction code 16 bit characters  

 
Using these binary codes we can store 8 direction binary codes (for example: j, d, i, d, j, d, i, j) in two byte character space as 16 bit 
binary number: 1000010010000110. 
 
In case of nucleotide alignment we also can reduce RAM memory usage 8 times by representing original sequences nucleotides 
instead of characters by two-digit binary number (Figure 8): 

 A 00 
 C 01 
 G 10 
 T 11 

 
Figure 8. Binary numbers instead of nucleotide characters 

 
In case of nucleotide alignment we can get additional reducing of RAM memory usage by using in alignmented sequences instead of 
characters three-digit binary numbers (Figure 9): 

 A 000 
 C 001 
 G 010 
 T 011 
 - 100 

 
Figure 9. Binary numbers instead of nucleotide characters and gap signs 

 
Forth improvement  
 
 
Hirschberg’s ideas for linear space alignment can be applicable to our situation and reduce the algorithm space requirements to 
minimum. 
 
In many cases when all results we need is only alignment score (sequence match quality) we don’t need to create the back track matrix 
and we can skip the trace back step. In these cases Toms algorithm has microscopic space requirements – O(m) and it can be 
effectively used in real time applications,  embedding systems, etc. 
 

Results	

For testing we wrote JavaScript programs for both algorithms.  
We used Mac Book Pro with 16 GB of RAM and 2.5 GHz processor.  
For both algorithms and all tests we used 6 as a gap penalty g, 3 as a mismatch penalty, and 0 as the score for a match. 
Browser for testing – Safari Version 10.0.1 (10602.2.14.0.7). 
  
Test 1. Alignment of sequences with 40% - 50% similarity (the worst case scenario for Toms algorithm) 
 
For comparison we found the same best alignment between two nucleotide sequences of equal lengths: 100, 200, … , 102,400 using 
both Needleman-Wunsch algorithm (NW) and Toms algorithm (T).  
 
Results represented by Table 1. 
 
Here is information about columns of Table 1: 
Length contains the length of nucleotide sequences. 
NW-time contains time of Needleman-Wunsch algorithm. 



NW-ram contains RAM usage of Needleman-Wunsch algorithm. 
T-time contains time of Toms algorithm. 
T-ram contains RAM usage of Toms algorithm. 
Tunnel holds the tunnel width of Toms algorithm, required to get the same alignment as Needleman-Wunsch algorithm. 
NW-time/T-time shows haw many times Toms algorithm faster than Needleman-Wunsch algorithm. 
NW-ram/T-ram shows haw many times Needleman-Wunsch algorithm consume RAM in compare with Toms Algorithm. 
 

 
Length NW-time NW-ram T-time T-ram Tunnel NW-time/T-time NW-ram/T-ram 

100 0.009 3,528 0.001 1,228 16 9.00 2.87 
200 0.016 12,028 0.002 2,428 16 8.00 4.95 
400 0.055 44,028 0.003 4,828 16 18.33 9.12 
800 0.187 168,028 0.006 9,628 16 31.17 17.45 

1,600 0.718 656,028 0.013 22,428 24 55.23 29.25 
3,200 2.791 2,592,028 0.032 51,228 32 87.22 50.60 
6,400 11.190 10,304,028 0.151 179,228 80 74.11 57.49 

12,800 49.634 41,088,028 0.528 512,028 128 94.00 80.25 
25,600 195.584 164,096,028 3.011 2,867,228 416 64.96 57.23 
51,200 756.726 655,872,028 10.006 9,420,828 704 75.63 69.62 

102,400 3,004.203 2,623,488,112 29.442 27,721,056 1,032 102.04 94.64 
 

 
Table 1. Toms vs Needleman-Wunsch time and space performance (40% - 50% similarity) 

 
Maximum length of sequences we could align with Needleman-Wunsch algorithm was 102,400.  Time was around 50 minutes.  
As you can see Toms algorithm with the same quality align sequences with 102,400 nucleotide approximately 100 times faster and use 
95 times less memory. 
 
Test 2. Alignment of sequences with 92% similarity (8% mismatch) - best scenario 
 
For comparison we found the same best alignment between two nucleotide sequences of equal length 100, 200, …, 102,400 using both 
Needleman-Wunsch algorithm (NW) and Toms Algorithm (T).  
 
Results represented by Table 2. 
 
Here is information about new columns of Table 2: 
Mismatches specifies the quantity of randomly placed different nucleotide in sequences. 
 

Length Mismatches NW-time NW-RAM T-time T-ram Tunnel NW-time/T-time NW-ram/T-ram 
100 8 0.002 3,300 0.001 1,000 8 2.00 3.30 
200 16 0.011 11,600 0.001 2,000 8 11.00 5.80 
400 32 0.044 43,200 0.001 4,000 8 44.00 10.80 
800 64 0.185 166,400 0.002 8,000 8 92.50 20.80 

1,600 128 0.719 652,800 0.004 16,000 8 179.75 40.80 
3,200 256 2.849 2,585,600 0.007 32,000 8 407.00 80.80 
6,400 512 11.251 10,291,200 0.020 64,000 8 562.55 160.80 

12,800 1,024 48.586 41,062,400 0.029 128,000 8 1,675.38 320.80 
25,600 2,048 201.355 164,044,800 0.050 256,000 8 4,027.10 640.80 
51,200 4,096 827.686 655,769,600 0.138 512,000 8 5,997.72 1,280.80 

102,400 8,192 3,287.611 2,622,259,200 0.230 1,024,000 8 14,293.96 2,560.80 
 

Table 2. Toms vs Needleman-Wunsch time and space performance (92% similarity) 
 
As you can see Toms algorithm with the same quality align sequences with 102,400 nucleotides approximately 14,294 times faster 
and use 2,560 times less memory. 
 



Test 3. Alignment of BIG sequences with 40% - 50% similarity 
 
For comparison we found the approximate alignment between two nucleotide sequences of equal length 227,215,351 (Chromosome 
#1) using Toms Algorithm (T) with different tunnel size.  This test gives us information how Toms Algorihm alignment quality 
depends from tunnel width. 
 
Results represented by Table 2. 
 
Here is information about new columns of Table 2: 
Score specifies the alignment penalty score: smaller score – better alignment quality. 
Matches specify the quantity of equal nucleotide in sequences. 
Mismatches specify the quantity of different nucleotide in sequences. 
Gaps specify the quantity of gaps added during alignment process. 
 

Length T-time T-ram Tunnel Score Matches Mismatches Gaps 
227,215,351 997.887 2,726,584,240 16 437,852,397 95,977,786 126,333,157 9,808,821 
227,215,351 1,630.276 3,181,014,942 24 434,939,886 97,728,677 124,322,248 10,328,857 
227,215,351 2,166.913 3,635,445,644 32 433,325,934 98,685,443 123,225,888 10,608,045 
227,215,351 2,680.877 4,089,876,346 40 432,331,602 99,284,883 122,537,116 10,786,709 
227,215,351 3,183.363 4,544,307,048 48 431,618,751 99,708,500 122,051,499 10,910,709 
227,215,351 3,710.798 4,998,737,750 56 431,096,403 100,020,157 121,693,995 11,002,403 
227,215,351 4,222.587 5,453,168,452 64 430,686,033 100,262,946 121,415,873 11,073,069 
227,215,351 4,752.078 5,907,599,154 72 430,338,033 100,464,188 121,186,217 11,129,897 
227,215,351 5,230.103 6,362,029,856 80 430,044,945 100,630,764 120,996,681 11,175,817 
227,215,351 5,695.261 6,816,460,558 88 429,805,587 100,766,551 120,842,227 11,213,151 
227,215,351 6,118.027 7,270,891,260 96 429,596,463 100,884,094 120,708,739 11,245,041 
227,215,351 6,765.925 7,725,321,962 104 429,405,135 100,989,465 120,589,503 11,272,771 
227,215,351 7,363.305 8,179,752,664 112 429,235,173 101,089,457 120,475,065 11,301,663 
227,215,351 7,992.569 8,634,183,366 120 429,037,440 101,185,506 120,368,970 11,321,755 
227,215,351 8,651.942 9,088,614,068 128 428,901,582 101,263,576 120,279,972 11,343,611 

 
Table 3. Toms algorithm quality (40% - 50% similarity) 

 
Results of this test show us that: 

1. Time growing in linear proportion from Tunnel width tw: T-time = O(tw) 
2. Quality of alignment growing much slower than tunnel width tw. If we increase tunnel width from 16 to 128 (8 times or 

700%) the alignment penalty score is reduced only from 437,852,397 to 428,901,582 (approximately 2%). This mean we can 
get much faster very good quality of alignment (even with 40% - 50% similarity) with relatively narrow tunnel. 

Programing tip: Allocate and free Ram ASAP. 

Summary	

Because of huge performance (time and space) and outstanding quality of alignment Toms Algorithm can be used (with or without 
minor modifications) also in many applications outside of bioinformatics: 

1. Computer stereo vision and stereo matching 
2. Image rectification by camera resectioning or calibration 
3. Removing lens unexpected distortions 
4. Inexact text matching (e.g. spell checking; web page search) 
5. Speech recognition 
6. Real time applications 
7. Embedding systems 
8. Measuring navigation disorientation in web based systems 
9. Natural language processing 
10. Optimal matching in social science 
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